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We respond to the questions raised in the preceding Comment [K. O’Neil and L. J. Campbell, Phys.
Rev. A 47, 2966 (1993)]. We explain why our statement ‘“vortex temperature is always positive” is
equivalent to the “opposite” statement in the Comment: “vortex temperature is always negative,” and
why we viewed the negative temperature states as paradoxical. We discuss also the notion of tempera-

ture for the limit case of infinite number of vortices.

PACS number(s): 05.90. +m, 67.40.Kh, 47.90.+a, 67.40.Vs

Herein, we address the questions raised in the preced-
ing Comment [1].

Sign of temperature. For reasons indicated in Refs.
[2,3] we accept for a system of point vortices the
Boltzmann temperature T based on the equipartition law
for ergodic motions,

T=<x‘§TIf>:"':<y"ain£>’ (1)

where (x,,y,) are coordinates of the ath vortex, H is the
Hamiltonian, and { ) means time average along a trajec-
tory. It is clear that the sign of T depends on the sign of
H. This ambiguity does not arise for ‘“normal” systems
[4] where H is identified with the sum of kinetic and po-
tential energies, i.e., with the total energy. For such sys-
tems, the region H <FE in state space is generically
homeomorphic to a ball with the canonical volume I'(E).
With this assumption, the thermodynamic temperature
I/T=dS/dE is always positive if the entropy S is
defined as InI'(E). This definition has two major advan-
tages for systems with finitely many, even few, degrees of
freedom: (a) S is adiabatically invariant and (b) thermo-
dynamic and Boltzmann temperatures coincide.

The Hamiltonian system of point vortices is quite
different from normal systems: H is not a sum of kinetic
and potential energies. Furthermore, the choice of the
sign for H depends on its interpretation as an interaction
energy [5] or as a stream function [6-8]. Both Hamil-
tonians are dynamically equivalent and the boundary is
attractive (repulsive) for the first (second) interpretation.
At the same time, the stream function Hamiltonian only
corresponds to a topological ball H < E and leads to posi-
tive T, whereas the interaction energy H corresponds to a
complement to the ball and leads to negative T as
correctly indicated in the Comment. We conclude that
for systems without preferable choice for the sign of H
the statement that 7 does not change its sign is more
meaningful than insisting that T is positive or negative.

Paradox of negative temperature. The very existence of
negative temperature for some physical systems is a well
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understood phenomenon and is not now paradoxial.
However, the change of sign of the Boltzmann tempera-
ture for vortex systems when H passes through a critical
value E_ seems really paradoxial. It follows from (1)
that T is proportional to the averaged oriented area
(y,%,) bounded by the ath vortex trajectory. A change
in the sign of T when H passes E_. corresponds to the
change of the average direction of rotation and such be-
havior of point vortices would be very paradoxial. We
underline that this statement is related to the Boltzmann
(and the corresponding thermodynamic) temperature, but
not to the temperature adopted in [9-11].

Vortex clumping and ergodicity. We expressed a doubt
[4] about clouds of positive and negative vortices being
compatible with ergodicity of motion. The authors of the
Comment argue that this is not the case. To be on more
solid basis than using mainly intuitive arguments, we sug-
gest that equipartition, which is a necessary condition for
ergodicity, be checked for these motions. Such extensive
numerical experiments are in progress now and hopefully
will provide a definite answer to this question.

Limit of infinite number of vortices. This limit is very
interesting and, perhaps, related to two-dimensional tur-
bulence. The equation for average flow was obtained in
Refs. [9-11], which received much attention especially in
connection with the approach developed in Refs.
[12—14]. Limit relations depend essentially on scaling
[15,16]. It is natural to keep energy and total vorticity
fixed while intensities k, of individual vortices tend to
zero as N~ !. This limit will be discussed in detail else-
where; here we mention only a point relevant to the dis-
cussion here.

Limit relations can be studied using microcanonical
and canonical distributions. For most systems, they are
asymptotically equivalent. In particular, the canonical
temperature T, =B ! corresponding to the canonical dis-
tribution f=2Z "lexp(—BH) is equal to the Boltzmann
temperature 7. This is not the case for motion of vor-
tices. Both T and T, tend to zero as N ! and should be
normalized by the factor N. The limit values of normal-
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ized Ty and T, coincide for E>E_ but are different
(even have different signs) for E < E_, where E, is a crit-
ical value of H. The canonical temperature T, is related
to the usual entropy S =In(d T /dE) while the Boltzmann
temperature T, is related to the adiabatic entropy
S=InI". This explains why different expressions for en-
tropy lead to conflicting results even in the case of
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N — . The system of point vortices is an interesting ex-
ample for which (normalized) limit temperatures T and
T, do not coincide.
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